Identification and Systematization of Good Practices and Biological Diversity Management Solutions

Systematization Guide
General Secretary
María Alexandra Moreira López

Executive Director
Embajador Carlos Alfredo Lazary Teixeira

Administrative Director
Carlos Armando Salinas Montes

Graphic Design | Layout
Rafael Secim | Barbara Miranda

Photograph
Kiyoshi, Unsplash 2021

Published with the support of:
German Cooperation for Sustainable Development (GIZ) through the OTCA Biomaz Project - Regional Management of Amazonian Biodiversity.

ACTO Biomaz Project - Regional Management of Amazonian Biodiversity

Coordinator
Cristian Guerrero Ponce de León

Technical Advisor
Julio Sampaio

Author
Guillermo Álvarez Beja

Collaborators:
Claudia Colomo. OTCA
Priscilla Peredo. OTCA
Carola Kuklinski. GIZ

Address
SEPN 510, Bloco A, 3º andar, Asa Norte
70.750-521 Brasilia-DF, Brasil
T: +55 61 3248 4119 / 4142
F: +55 61 3248 4238
www.otca.org
© OTCA 2022

La reproducción es permitida citando la fuente.
Identification and Systematization of Good Practices and Biological Diversity Management Solutions

Systematization Guide

November, 2022
Summary

1. Introduction 7

2. Context 9

3. Definitions and features of GP/S and systematization 11
 3.1 Conceptual basis of good practices (gp) 11
 3.2 Conceptual basis of solutions (s) 12
 3.3 FEATURES OF GP/S IN ORDER TO BE ABLE TO IDENTIFY THEM 13
 3.4 Case conceptual – sistematización 14

4. Thematic areas for the classification of GP/S 15

5. Steps in the GP/S systematization process 16

6. GP/S systematization 18
 6.1 Phase 1: GP/S search and identification 18
 6.2 Phase 2: GP/S characterization 19
 6.2.1 Application of the GP/S Information Collection Form 20
 6.3 Phase 3: GP/S qualification and selection 25
 6.3.1 GP/S qualification and selection criteria 25
 6.3.2 GP/S qualification and selection process 27

7. Annexes 29
 Annex 1: Sample systematization — Solutions 29
 A. Solution for sacred river basins in the Amazon 29
 1. Thematic Area 1 29
 2. Overview 29
 3. Identification and location of the GP/S 30
 4. Summary of Problem 31
5. Definition of the problem mitigation or resolution process 31
 5.1. Problem identification and description 31
 5.2. Identification and description of the GP implemented 33
6. Results achieved 34
 6.1. Potential for GP replication 36
7. Impact generated 36
8. Identification of actors 36
9. References 37

Annex 2: Sample systematization of Good Practices 38

A. Good Conservation Practices — Creation of the Unini River Extractive Reserve under a public consultation process 38

1. Thematic Area 2 38
2. Summary of GP 38
3. Identification and location of the GP 39
 3.1. Type of GP 39
 3.2. Location of the GP 39
 3.3. Summary of Problem 40
4. Definition of the problem mitigation or resolution process 41
 4.1. Problem identification and description 41
 4.2. Identification and description of the GP implemented 42
5. Results Achieved 42
 5.1. Potential for GP replication 43
6. Impact Generated 43
7. Identification of actors 43
8. References 45
1. Introduction

The Amazon Cooperation Treaty Organization (ACTO) is a permanent forum for cooperation, exchange and knowledge that pursues the principle of reducing asymmetries among Member Countries. ACTO’s strategic objectives include facilitating and promoting actions to preserve, protect, conserve, and sustainably use the forest, biodiversity and water resources in the Amazon. In May 2021, the Amazonian countries, through dedicated technical work and political will, agreed on the Biological Diversity Program for the Amazon Basin/Region, the culmination of a series of meetings and more than a year of intense negotiation. This Program is the long-term guiding framework for the development and implementation of strategic and cooperative actions with a view to improving the management of biological diversity and the protection of the traditional knowledge of indigenous peoples, and local and traditional communities in the Amazon. The Program covers the need to implement actions that contribute to the development of shared efforts at the regional level while emphasizing the special importance of identifying models, initiatives and actions developed by the countries under implementation of the NBSAPs (National Biological Diversity Strategies and Action Plans). It also includes the establishment of mechanisms to capture experiences and exchange information and knowledge management on biological diversity in the Amazon Basin/Region. Under Component 2 of the Biological Diversity Program for the Amazon Basin/Region in particular, Strategic Action 3 was defined as the “Promotion of processes for the systematization of good practices and solutions to manage biological diversity and the benefits of ecosystems/environmental functions/environmental services.” As such, the Program will provide support by publicizing successful experiences associated to the learning initiatives, solutions and/or approaches to managing biological diversity in MCs, which help to identify the benefits and added value of a regional approach under the ACTO framework. This will make it possible to identify, select and systematize these good practices and solutions based on a conceptual and methodological
approach shared with the Member Countries. In addition, these experiences will be disseminated at the national, regional and global levels. In order to initiate the implementation of this strategic action, the PS/OTCA, through the ACTO-Biomaz Project: Regional Management of Amazon Biodiversity, prepared this Guide as a tool to inform the systematization of good practices and solutions jointly with the Member Countries.
2. Background

Amazon forests not only have an influence in the global climate, they purify water and they hold 44% of the world’s total carbon reserve, in addition to resources for the development of 40 million inhabitants and more than 420 indigenous peoples (ACTO 2021). The Amazon region is also home to 10% of the highly endemic biological diversity that is known. It has various ecosystems that are home to the largest diversity of birds, fishes, primates, and butterflies in the world. Furthermore, the Amazon region is the last refuge in the world for some endangered species such as harpy eagles and pink river dolphins. There are about 2,500 species of freshwater fish and over 14,000 species of angiosperms typical of lowland wet forests. Yet little scientific knowledge is available about the Amazon, and it is estimated that tree species in the lowland wet forests account for approximately 20% of the world total. The Amazon River basin is the largest in the world, with an average flow rate of 230,000 m³ per second, which corresponds to approximately 20% of the world’s surface fresh water. (FAO 2020 a, b; FAO-UN 2020).

ACTO Member Countries, in their national reports, conducted an analysis of the threats to Amazon territories. The main threats identified include land use change; degradation of native ecosystems; deforestation; poaching; illegal and selective logging; removal and trade in fauna species, biological invasions; and pollution of water bodies. In the case of land use changes, these are associated to loss or degradation of native ecosystems and agroecosystems due to agribusiness, mining and urbanization. Forest degradation is also associated to the expansion of mining, illicit farming, tropical logging; and uncontrolled use of fire. These threats pose challenges for the Amazon Basin/Region; however, they can be addressed by implementing good practices and solutions that contribute to sustainable development through the conservation of its biological diversity and its components while promoting the well-being of the populations that dwell in it. Losses of Biological Diversity and degradation of ecosystems continue unchecked, which means that even when efforts to change this situation are relevant, it is necessary to continue seeking and developing

1 ACTO 2021. Biological Diversity Program for the Amazon Basin/Region.
2 National Reports (NR) submitted to the CBD; the 6th national report (6NR ‘18) has already been submitted. https://www.cbd.int/reports/
strategies and mechanisms to help improve the situation. Some years ago the so-called solutions and good practices were developed to improve or contribute to the conservation, restoration and sustainable development of Biological Diversity and its components. The new Biological Diversity Program for the Amazon Basin/Region acknowledges the importance of identifying models, initiatives, and actions developed by the countries as part of the implementation of their national biological diversity strategies and action plans (NBSAPs), as well as the creation of mechanisms to capture experiences and exchange information on biological diversity in the Amazon Basin/Region. This framework provides the appropriate environment for identifying Good Practices and Solutions (GP/S), sharing their impacts, and strengthening joint and cooperative actions to identify GP/S with a potential regional reach for conservation and sustainable use of biological diversity and its goods and services in the territory of the parties and in the region as a whole.
3. Definitions and features of GP/S and systematization

3.1 Conceptual basis of good practices (gp)

When applied in different production domains, Good Practices (GP) are defined as standardized, legal, approved procedures intended to generate high-quality outputs, processes/procedures or services. GPs have recently been applied in the environmental domain, where they are called Good Environmental Practices, and considered as a “set of actions intended to reduce the negative environmental impact caused by activities of various kinds, through changes and improvements in the organization and development of such actions”.

Its usefulness and use are based on its demonstrated effective results, low costs and ease of implementation, in addition to the short time required to verify the results obtained. As formal processes, tools, and instruments, GPs are mainly conducted or managed by institutional actors. Their implementation, however, involve formal or informal private institutional actors, as well as associations, communities, and producers, among others.

The United Nations’ Food and Agriculture Organization (FAO) states that “...a GP is not only a practice that is defined as good in itself, but it is a practice that has been proven to work well and produce good results, and is therefore recommended as a model” (FAO, 2021).

Its successful process and has been broadly tested and validated, and is intended to have replicability. As part of the 2030 Agenda for Sustainable Development, the Convention on

3In 1988, Edward Deming defines quality as the predictable degree of uniformity and dependability at a low cost, indicating that quality is a series of questions towards continuous improvement. The challenge involving quality is translating future needs into measurable characteristics required, and therefore they need to be constantly innovated and improved.

Biological Diversity (CBD) undertakes various initiatives such as the Toolbox and a series of Good Practice Guides that include “policy considerations, management tools, market-based instruments and capacity-building methods that support biodiversity conservation and poverty alleviation in various development sectors” through tourism, forest management, grazing, water management, and planning of ecosystem goods and benefits/environmental functions/environmental services, among others.

Therefore, and despite the fact that there is no agreed definition, it is fair to say that the existing definitions agree that GPs are the implementation of actions, instruments, tools, standards or a different standardized, formal or established mechanism on the process to contribute to solving problems that affect biological diversity, its components and benefits of ecosystems/environmental functions/environmental services.

3.2 Conceptual basis of solutions (S)

The Solutions (S) refer to actions intended to solve or address problems generated by the effects of threats to the environment, biological diversity, its components and benefits of ecosystems/environmental functions/environmental services. Solutions are considered as such, not only because they are successful in experimental initiatives or unique experiences, but they should be replicable or inspire other solutions in different areas where a threat or problem exists.

The Solutions approach is not new and, unlike GPs, the solutions do not need the mechanism or process to be related to instruments or tools formally established or implemented, or previously approved. Solutions are usually new or innovative initiatives; these solutions may never have been implemented and the only quality they require is to solve a problem without any effect on the environment or Biological Diversity. As such, solutions for the management of Biological Diversity, its components and benefits of ecosystems/environmental functions/environmental services should focus on solving a widely identified problem. The generating actors and the participating actors can be institutional; from the research or innovation community; private, civil or community organizations; as well as farmer or indigenous communities, which may participate independently or jointly. In recent years, Solutions have been promoted and disseminated to a great extent, and there are platforms, such as the Panorama Portal, which provide toolboxes for the identification of said Solutions, and their basic condition is that these must

5CBD: Good Practice Guides https://www.cbd.int/development/training/guides/
be successful in their implementation, and they must have been adopted in different areas, in addition to being specific.

The so-called nature- or ecosystem-based solutions are some of the most widespread and known today, and in this regard the IUCN6 indicates that

In this understanding the solutions must respond to challenges such as sustainable use, the improvement of human well-being, and must contribute to maintaining or improving the health of biological diversity and its components.

en este entender las soluciones deben de responder a desafíos como el aprovechamiento sostenible/sustentable, la mejora del bienestar humano y deben de contribuir a mantener o mejorar la salud de la diversidad biológica y sus componentes.

3.3 Features of GP/S in order to be able to identify them

Good Practices and Solutions (GP/S) have similarities and differences that are used in their characterization (figure nº1). The most important point that differentiates them is that Solutions, to be considered as such, must halt or eliminate the threat(s) or their effect on biological diversity, its components and benefits of ecosystems/environmental services; while Good Practices do not always require fulfilling that purpose, it is enough that processes or procedures are fulfilled effectively.

With regard to the procedures used, the type of problem, as well as the impacts generated, these could be equivalent and even complementary, depending on the type of problem or threat. Therefore, it is important to identify and characterize them separately and thus be able to ascertain the best impact they can generate. In this guide, this characterization is used to help identify the GP/S and differentiate the type of information that should be sought.

6 CIUCN: International Union for Conservation of Nature. It works with a wide range of topics related to conservation, the environment and ecological issues. https://www.iucn.org/es/tema
3.4 Conceptual basis – systematization

Systematization is defined as the process that establishes a procedure to order and organize various elements, such as outputs, inputs, processes, methodologies, etc. in order to generate knowledge that can be transmitted, compared, disclosed, disseminated or used as an input or means of obtaining other outputs (Jara, 1994; Francke and Morgan, M., 1995). The type of organization and ordering of elements under the systematization typically has as its starting point the definition, understanding and identification of how the elements are related or connected (one-to-one, two-to-two or more complex relationships), and these interplays are called “tags,” which are key-words that allow the elements to be related and thus systematized, and they become more and more specific with each phase. The design of the tags is based on the purpose, use and benefits of the GP/S, considering definitions, characteristics, location, theme, and other elements that set them apart from other types of intervention initiatives. As such, tags are a mechanism for systematizing GP/S.
4. Thematic areas for the classification of GP/S

The themes in the components of the Biological Diversity Program for the Amazon Basin/Region are organized in the following thematic areas:

a. **Experiences related to biological diversity protection and conservation**
 - Biological diversity protection and conservation.
 - Management, monitoring, control and handling of wild flora and fauna species, with an emphasis on endangered and endemic species.
 - Prevention, control, monitoring and eradication of invasive species.
 - Management of protected areas, and other effective area-based conservation measures (OECMs).

b. **Experiences related to sustainable production practices**
 - Promotion of sustainable production practices for conservation and sustainable socio-economic development based on biological diversity, such as biological diversity economy, bioeconomy, biotrade, Mother Earth economy, etc.
 - Promotion of fair and equitable distribution of the benefits derived from the use of genetic resources from biological diversity in the Amazon Basin/Region.
 - Traditional knowledge and participation of indigenous peoples, local communities and other tribal communities in the conservation and sustainable use of biological diversity.

c. **Cross-cutting themes/other themes**
 - Forest and ecosystem restoration
 - Scientific research, technology and innovation related to biological diversity in the Amazon.
 - Gender and inclusion of women in the management of biological diversity.
 - Biological diversity in nutrition and health.
 - Financial mechanisms and instruments for the management of biological diversity and benefits of ecosystems/environmental functions/environmental services.
5. STEPS IN THE GP/S SYSTEMATIZATION PROCESS

The systematization process takes place at the level of national experiences in the Amazon and the ACTO region, and a global search is also performed. This is a four-step process, where the first step involves the development of concepts, tools and instruments and procedures, and the three remaining steps correspond to the implementation with their respective instruments and tools.

• **Step 1:** The concepts supporting the definition and description of the Good Practices and Solutions (GP/S) described under items 3.1 to 3.4 are established, as well as their characteristics (Figure 1), which are then identified, recognized and finally systematized.

• **Step 2:** Processes and procedures are established for the implementation of the GP/S and are described in three Systematization Phases derived from the characteristics of the GP/S. These procedures range from the search and identification of potential GP/S to their qualification and selection.

• **Step 3:** The instruments and tools for the GP/S systematization are presented, and they include Matrices (Systematization of information), Form (collection of information on potential GP/S), Tags (keywords to order and organize the information), and a GP/S Qualification and Selection Key. The information can then be organized, systematized and analyzed based on the characteristics of the GP/S.

• **Step 4:** The GP/S systematization process is performed in 3 steps (figure n°2). This process begins with Phase 1, which involves the search and identification of potential GP/S; Phase 2, where a search for detailed information on the identified GP/S is conducted; and Phase 3, where GP qualification and selection criteria are applied.
CAPÍTULO 5. Etapas del procesos de sistematización de BP/S

Figure n°2: Steps and Phases in the GP/S systematization process

1. **Conceptual Basis**
 - Concepts and characteristics of GP/S

2. **Define a Process**
 - Definition of systematization steps and phases

3. **Develop Instruments**
 - Development of criteria, format and matrices

4. **Systematize**
 - Search, identification, qualification and selection of GP/S

Sub-steps
- F1: Search and identification of potential GP/S
- F2: Characterization of potential GP/S
- F3: Analysis and selection of GP/S
6. GP/S SYSTEMATIZATION

This process is designed to cover three phases, and the result of the individual phases serves as input for the remaining phases. The final result are Best Practices and Solutions (GP/S) identified, characterized and selected for their subsequent promotion, publication and dissemination.

6.1 PHASE 1: GP/S SEARCH AND IDENTIFICATION

This begins with a search for initiatives, potential GP/S in on-line platforms, portals, compendiums, websites, etc. at the local, national, regional, or global level, which are captured in a matrix (Table nº1). These initiatives should have 7 elements at a minimum according to the identification tags for the initiatives in Phase 1.

- **Country** or location where the initiative was developed or prepared
- **Year** of implementation
- **GP/S**, check whether or not it has been identified
- **Scope** – Level of its implementation – Local, national, regional
- **GP/S Theme**: outline one of the selected themes
- **Ecosystem** of implementation:
- **Problem** addressed and solved by the initiative
- **Name** of the initiative (indicate whether it is a GP or a S)
- **Link**: capture the linkages of the base information

Table nº1: Initiative identification matrix (Base information matrix)

<table>
<thead>
<tr>
<th>#</th>
<th>Type</th>
<th>Country</th>
<th>Year</th>
<th>GP/S</th>
<th>Scope</th>
<th>GP/S Theme</th>
<th>Ecosystem</th>
<th>Problem</th>
<th>Name</th>
<th>Linkage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
For completion of the initiative identification matrix (Table nº1), the information on the compiled initiatives should be checked, including whether they have the minimum information and/or ability to obtain more detailed information; the potential GP/S are then divided into two groups of initiatives – those identified as potential GP/S and those that are not or failed to be identified as such.

The output from the Phase 1 is information on potential GP/S in an orderly and differentiated manner in order to identify the need to search for additional information.

6.2 PHASE 2: GP/S CHARACTERIZATION

In this phase, a search for more detailed information is carried out for the characterization of the potential GP/S organized in Phase 1. The information search will be based on the Tags of Phase 2, which are described below:

- Identification: name, type (GP/S), location (country, state, city, other) and other details on the initiatives
- Problems and causes: identification of the original problem, as well as its causes and effects
- Means of intervention: information supporting the intervention means used to prevent or solve the original problem
- Problem status: the status of the original problem should be indicated, i.e., whether it has been prevented, solved or whether it persists
- Results and Impact: means that help establish the results and impacts arising from the solution or reduction of the effects of the problem
- Actors: identification of the actors by type of intervention in the intervention process or as beneficiaries of the intervention.

These tags are used to complete an Information Collection Form (item 6.2.1). It works as an information sheet, with alternatives and options so as to adequately guide and organize the search. There is also a characterization matrix (Table nº2) for this information to be analyzed and to qualify and select GP/S in Phase 3.
The characterization matrix contains summary information for the purpose of classification and ordering according to various criteria, i.e., by country, by topic or type of initiative, etc. obtained through the information collection form, which is described below.

6.2.1 Application of the GP/S Information Collection Form

The form is based on the characteristics of the GP/S and is intended to guide the search and systematization of the information that supports the GP or S. In addition to being used in the GP/S systematization and classification process, the information to be obtained and captured in the form will also be used to prepare the descriptive version for their dissemination. This form includes 5 technical sections and an annex section (Figure nº3).

Figure nº3: Sections in the information collection form
The six sections in the form are summarized as follows:

Section 1. Identification and location of the GP/S implemented

This section is intended to gather information on the identification and location of the GP/S, as well as information on the problem and a summary of the GP or S itself.

a. Identification of the GP/S.
- Name of the GP/S
 Indicates whether the initiative has a denomination or name
- Type of GP/S
 Indicates whether the initiative is a Good Practice (GP) or a Solution (S) according to the definitions set forth in the conceptual section.

b. Location of the GP/S.
- Location where the GP/S was identified
 Indicates details of the location where the GP/S was implemented, including the site, province or department/state/region as appropriate.
- Level of application of the GP/S, at the country’s discretion
 Indicates whether the GP/S has been identified, applied or implemented at the local, sub-national or national level, at the regional level (ACTO Region) or at the international level (in other countries or regions).

c. Summary of Problem.
The summary is to include the problem, the site and scope of influence, the actors affected and the main impacts generated.

d. Summary of GP/S.
The site, beneficiaries and main results obtained should be included in the summary of the GP/S and, if possible, it should indicate whether the problem was solved or whether it only helped to mitigate the problem.

Section 2. Problem and its mitigation or resolution process

The information in this section helps to establish whether it is a GP or S. Likewise, one can identify the relevant problem, its causes and effects. The information collected helps to establish the means of intervention for the problem and to differentiate the GP/S.

This section should be completed with information supported by referenced evidence, published in academic or management media or on the websites of recognized organizations. Over the subsequent sections, the required and indicated information will help to follow up on actors, processes and impact drivers for the threats.
a. Problem identification and description

- Problem definition
 According to the summary of the problem provided under Section 1, the type of threat posed by the problem should be identified.

- Causes and effects of the problem
 This part of the form briefly describes both the cause(s) and the effects of the problem for which the GP/S was applied. There should be an indication as to whether these causes are at the subnational, national, regional (OTCA) or international/global level. In addition, evidence of said causes must be provided; this can be analysis documents, maps, records, or data that demonstrate the effects at the level of species, ecosystems or species communities, or a different level to be specified.

b. Identification and description of the GP/S implemented

- Definition of the GP/S theme
 According to the description of the GP/S (Section 1), in this part of the form the classification category (Chapter 4) under which the GP/S falls is selected.

- Definition of the type of instruments or tools used
 In this part of the form, the management instrument(s) or tool(s)\(^7\) used for the implementation of the GP/S are indicated, including the details on the type of instrument, i.e., whether they are legal, normative/regulatory or other instruments. It should be understood that said instrument(s) will be those that were used, or through which the GP/S was implemented to mitigate or solve the problem described. Also, there should be an indication of how it was used in the process, whether it was a standalone instrument or used in conjunction with other existing instruments. The supporting evidence (norms, laws, manuals, websites, etc.) should also be indicated.

- Definition of the type of means(s) or mechanism(s) used
 This part of the form identifies the means(s) or mechanism(s)\(^8\) used in the implementation of the GP/S, with details of its characteristics. These means/mechanisms are different procedures to the instruments or tools indicated in the previous item; these means/mechanisms may be unique, innovative, may correspond to social actions, scientific or technological processes, etc., and through these means/mechanisms the GP/S was

\(^7\) Definition of a management instrument or tool: Management instruments or tools are a set of technical documents that regulate or form part of the regulation of biological or environmental diversity management. (Glossary enclosed)

\(^8\) Definition of a management instrument or tool: Management instruments or tools are a set of technical documents that regulate or form part of the regulation of biological or environmental diversity management. (Glossary enclosed)
implemented to mitigate or solve the problem described. Also, there must be an indication of how it was used in the process, whether it was a standalone instrument or used in conjunction with other mechanisms. The supporting evidence (norms, laws, manuals, websites, etc.) should also be indicated.

Section 3: Results achieved

This section is intended to identify the results of the GP/S and their potential for replicability while explaining or supporting said results, as well as the effects of the instruments/tools and the means/mechanisms in the process of mitigation or resolution of the relevant problem.

a. Status of mitigation or resolution of the problem
 • Status of the problem upon completion of the GP or S:
 Whether the information gathered is about a GP (Good Practice) or an S (Solution), and taking into consideration the information on the problem in Sections 1 and 2 (description, threat, etc.) and the “BP” or “S” implementation process, it should be indicated whether the problem is mitigated, resolved, unresolved or undefined. In addition, a brief explanation of the alternative indicated should be provided.

b. Results and/or effects obtained from implementation of the GP/S
 In this part, a brief description of the results achieved by the GP/S in the problem mitigation or resolution process should be provided, with an indication and description of all, or at least for the most relevant results. In addition, the supporting evidence should be enclosed.

c. Potential for GP/S replication/upscaling
 • Indication whether the “BP” or “S” can be replicated/scaled up:
 Whether the information gathered is about a GP (Good Practice) or an S (Solution), and taking into consideration the information on the problem in Sections 1 and 2 (description, threat, etc.) and the “BP” or “S” implementation process, it should be indicated whether the “BP” or “S” can be replicated/scaled up. As such, details of the replicability/scalability potential and scope (local, subnational, national; Amazon region, other Regions) should be indicated.

Section 4: Impacts generated by the GP/S

Based on the identification of the im-
pacts, this section is intended to rate the effectiveness of the GP/S. The effectiveness of instruments/tools and means/mechanisms in the process of mitigation or resolution of the relevant problem can also be evaluated.

a. Definition of the type of impacts resulting from implementation of the GP/S
In this part of the form, the type of impact achieved by mitigating or resolving the problem by means of the “BP” or “S” should be indicated. It should be specified whether the impact is of a social, economic, environmental, educational or other nature.

b. Definition and description of impacts resulting from implementation of the GP/S
This part of the form should describe all the impacts identified in the previous item. In addition, the supporting evidence should be enclosed.

Section 5. Identify the actors
This section describes the types of actors and their relationship with the GP/S implementation process, as well as their influence on the scope of results and impacts.

a. Actors involved in the GP or S
• Define the type of actor in the implementation of the good practice (GP) or solution (S)
This part of the form should identify the type(s) of actors involved in the implementation of the GP/S intended to mitigate or resolve the problem. Likewise, it should be indicated whether the actor is a beneficiary or participant in the GP/S and, finally, it should indicate whether it is a state actor or whether it comes from the private, civil, community, academic, or other sector.

• Define the benefit(s) or type of intervention by the actors in the good practice (GP) or solution (S) implementation
This part of the form should briefly describe the type of intervention conducted by the actors in the GP/S implementation and in the problem mitigation or resolution process.

Section 6. Annexes to the sections
This section should include the annexes required to reinforce or expand on the information in each of the five technical sections, starting with those indicated in the various sections of the form, with an indication of links, papers, files, bibliographic references, websites, portals, etc. References to the respective section, item or heading should be indicated.

6.3 PHASE 3: GP/S QUALIFICATION AND SELECTION
6.3.1 GP/S qualification and selection criteria
For this final step, all the information available for each potential GP/S identified will be analyzed and organized, and it will be systematized in the implementation matrix (Table nº3), whose tags are the selection criteria of the GP/S to make their qualification easier.

Table nº3: Systematization matrix for qualifying initiatives

<table>
<thead>
<tr>
<th>Nº</th>
<th>GP/S</th>
<th>Country</th>
<th>GP/S Theme</th>
<th>Problem</th>
<th>CR1</th>
<th>CR2</th>
<th>CR3</th>
<th>CR4</th>
<th>CR5</th>
<th>CR6</th>
</tr>
</thead>
</table>

The potential GP/S will be selected according to qualification and selection criteria (Figure nº4), and the values will be established according to the characteristics assigned to the GP/S through these criteria (Table nº4).

This guide outlines six criteria (Figure nº4) for the analysis, qualification and selection of the GP/S with the most comprehensive characteristics to be disseminated, promoted, replicated or scaled up as part of the ACTO cooperation.

- **CR1: Regionality**: The source of the initiatives is qualified, i.e., where they were originally generated or devised and implemented and the original countries that participated. In addition, three categories of initiatives are established according to the regional level, Country from a different domain or region, an ACTO country, and between two or more ACTO countries.

- **CR2: Effectiveness**: GP/S that managed to solve a problem or significantly reduced its impacts.

- **CR3: Replicability**: GP/S with current or potential replicability at the local or subnational, national or regional level in the Amazon.

- **CR4: Scalability**: GP/S with current or potential scalability at the local or subnational, national or regional level in the Amazon.

- **CR5: Sustainability**: GP/S with sustainable social, environmental and/or economic/financial results and impacts.

- **CR6: Approaches**: GP/S that integrate approaches related to gender, equity and fair and equitable sharing of benefits as essential elements towards solving the problem of reducing its impact.
- **Country from a different domain or Region**: Initiative implemented in any country other than ACTO Member Countries

- **An ACTO Country**: Initiative implemented in ACTO Member Countries in the Amazon basin/region

- **Between two or more ACTO countries**: Initiative implemented between two or more ACTO countries in the Amazon basin/region

CR2: Effectiveness: Initiatives are rated according to their effectiveness in the implementation process, i.e., whether they not only had positive results, but also generated an impact, which means having caused the core problem to be solved, prevented or mitigated. Three categories of initiatives are established according to their impact – None, Medium or High.

 - **None or Low**: No evidence or results show effectiveness
 - **Medium**: Evidence of positive results from implementation of the intervention
 - **High**: Evidence of prevention of resolution of the relevant problem

CR3: Replicability: Initiatives are rated according to the level of success in replicating the initiative in the same country or region where they were originally generated and implemented, or the number of different countries or regions where this initiative was successfully implemented, i.e., with equal or better results compared to the original implementation. Three categories of initiatives are established according to their impact – None, Partial or High.

 - **None**: No evidence of replication exists
 - **Partial**: Evidence of positive results replicated in the same country
 - **High**: Evidence of positive results replicated in more than one or two countries

CR4: Scalability: Initiatives are rated according to the level of success in scaling up the GP/S, i.e. the initiative has been more successful than its original implementation.

 By more successful we mean, for instance, cases where it was created at the local level and scaled up to the national or regional level, or it could also be cases where the GP/S was developed under experimental conditions and scaled up to real conditions, or similar situations. Three categories of initiatives are established according to their impact – None, Partial or High.

 - **None**: No evidence exists
 - **Local or National**: of results from upscaling in the same country
- **Regional/ACTO**: Evidence of results from upscaling in more than one or two countries

- **CR5: Sustainability**: Initiatives are rated for the sustainability of their impacts over time, its post-implementation, i.e., the results are not only effective but are maintained in the generation of the solution, and prevention or mitigation of the core problem. Three categories of initiatives are established according to their impact – None, Medium or High.
 - **None/Low**: No evidence of sustainability of the initiative over time
 - **Medium**: Evidence of positive results make it potentially sustainable
 - **High**: Evidence of positive results towards its sustainability or evidence of sustainability over time

- **CR6: Approaches**: Initiatives are rated for their ability to mainstream approaches such as the approach related to gender, equity, fair and equitable sharing of benefits, ecosystem services and other essential services towards solving the problem or reducing its impacts. Three categories of initiatives are established – No specific approach, At least one approach, More than one approach.
 - **No specific approach**: No specific approach exists
 - **At least one approach**: At least one specific approach is included
 - **More than two approaches**: More than two approaches are included

6.3.2 GP/S qualification and selection process

The GP/S identified will undergo an analysis based on the criteria and the score established for their qualification (Table nº4). According to the score obtained, the GP/S may be classified as incomplete GP/S, partially complete GP/S, and complete GP/S. It should be pointed out that the criteria have the same weighing in the analysis.

- **06 to 18 points** qualify it as an **INCOMPLETE BP/S**,
- **24 to 36 points** qualify it as a **PARTIALLY COMPLETE BP/S** and
- **42 to 60 points** qualify it as a **COMPLETE BP/S**
Table n°4: Criteria and scoring key for GP/S qualification

<table>
<thead>
<tr>
<th></th>
<th>0 - 3 points</th>
<th>4 - 6 points</th>
<th>7 - 10 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effectiveness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None or Low</td>
<td></td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>No evidence or results show effectiveness</td>
<td></td>
<td>Evidence of positive results from implementation of the intervention</td>
<td>Evidence of prevention of resolution of the relevant problem</td>
</tr>
<tr>
<td>Regionality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country from a different domain or Region</td>
<td></td>
<td>An ACTO Country</td>
<td>Among two or more ACTO countries:</td>
</tr>
<tr>
<td>Initiative implemented in any country other than ACTO Member Countries</td>
<td>Initiative implemented in the Amazon basin/region of the ACTO Member Country</td>
<td>Initiative implemented between two or more ACTO countries in the Amazon basin/region</td>
<td></td>
</tr>
<tr>
<td>Sustainability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None/Low</td>
<td></td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>No evidence of sustainability of the initiative over time</td>
<td></td>
<td>Evidence of positive results make it potentially sustainable</td>
<td>Evidence of positive results towards its sustainability or evidence of sustainability over time</td>
</tr>
<tr>
<td>Replicability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td>Partial</td>
<td>High</td>
</tr>
<tr>
<td>No evidence of replication exists</td>
<td></td>
<td>Evidence of positive results replicated in the same country</td>
<td>Evidence of positive results replicated in more than one or two countries</td>
</tr>
<tr>
<td>Scalability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td>Local or National</td>
<td>Regional / ACTO</td>
</tr>
<tr>
<td>No evidence exists</td>
<td></td>
<td>Evidence of results from upscaling in the same country</td>
<td>Evidence of results from upscaling in more than one or two countries</td>
</tr>
<tr>
<td>Approaches</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No specific approach</td>
<td></td>
<td>At least one approach</td>
<td>More than two approaches</td>
</tr>
<tr>
<td>No specific approach exists</td>
<td></td>
<td>At least one specific approach is included</td>
<td>More than two approaches are included</td>
</tr>
</tbody>
</table>
Annex 1: Sample systematization – Solutions

A. Solution for sacred river basins in the Amazon

1. Thematic Area 1:
 Biological diversity protection and conservation

2. Overview
 The threats to river basins are of an anthropogenic nature and are associated to urban development and production activities, such as the construction of roads and highways, plantations such as oil palm, and illegal logging operations, as well as waste and effluents from extractive activities such as oil and gas. Such is the case of the river basin of the Moroña, Napo and Putumayo rivers and the Marañón river, which join the Provinces of Napo, Pastaza and Morona (Ecuador), and the Regions of Amazonas and Loreto (Peru).

 In order to conserve biological diversity, climate resilience, ecological integrity and, above all, to safeguard the traditional customs of native indigenous peoples, through a bi-national cooperation process involving Ecuador (CONFENIAE) and Peru (AIDESEP), mechanisms were developed and instruments were created through collaborative decision-making, co-governance, and self-governance by Indigenous or Native Amazon Peoples to protect 60 million acres of tropical forests in the Napo, Pastaza, and Marañón river basins through the establishment of the Biocultural Sanctuary in the heart of the basins, with processes of titling and participatory census of indigenous lands, natural resource management planning and climate change policies. The implementation of natural resource plans and participatory management were promoted with the use of the collective wisdom of the communities, as well as sustainable land use planning in the region, raising the profile of the sacred headwaters of the Amazon as a means of solving looming territorial threats.

 These processes were conducted through an inter-institutional agreement between CONFENIAE and AIDESEP, signed in 2018, as well as with the participation of the Pachamama Foundation, the national government of Ecuador, local provincial, departmental and municipal governments, and indigenous organizations in the Amazon together with Amazon Watch and Pachamama Alliance.
3. Identification and location of the GP/S

It is a Solution (S) since it was based on the indigenous worldview through an alliance comprising the indigenous organizations of Ecuador and Peru that work towards the permanent protection of the Sacred Headwaters of the Amazon.

The Sacred Amazon Basins are located in Peru and Ecuador, in the Provinces of Napo, Pastaza and Morona (Ecuador) and the Regions of Amazonas and Loreto (Peru), which correspond to the river basin of the Moroña, Napo, Putumayo and Marañón rivers. These basins cover an area of 35 million hectares of tropical forest. These forests capture approximately 24,155Mg of carbon. Forty-five per cent (45%) of the territory is under the custody of indigenous communities and is inhabited by 600,000 people of more than 30 indigenous nationalities: Achuar, Shuar-Wampis, Kichwa, Siekopa’i, Sapa- Arabela-Ikitu, Andoa, Waorani, Kijus, A’i Kofán, Siona, Shiwiar, Ashaninka, Awajún, Bora, Chamicuro, Shawi, Huitoto, Kakataibo, Kandozi, Kapanawa, Yiné, Kukama Kukamiria, Maijuna, Matsés, Munique, Murui-muminami, Quechua, Shapra, Shiwilu, Shipibo – Conibo, Yagua, Urarina, Yaminahua, Taromenani, Tagaeri, Ferromenani, Punanujuri, A’ewa, Aushiri and Avijiria. Solution implementation is Regional because it is developed in Ecuador and Peru, which are members of ACTO.

Map of Sacred River Basins in the Amazon (Peru and Ecuador)⁹

⁹https://cuencasagradas.org/nosotros/
4. Summary of Problem.

The industrial extractive processes in the headwaters of the sacred river basins in the Amazon are the source of social conflicts and pollution.

The ongoing industrial expansion is leading the Amazon basin to an ecological tipping point resulting from losses of biodiversity and savannization due to the combined effects of the expansion of the productive-extractive frontier, deforestation and forest fires.

The recognition of protecting the Sacred River Basins in the Amazon will allow them to permanently protect their forests and indigenous peoples, and offers the world a solution to the climate crisis since this bioregion accounts for more than 5,700 million tons of carbon in standing forests and nearly 5,000 million tons of CO2 in emissions avoided from undeveloped oil reserves.

5. Definition of the problem mitigation or resolution process

5.1 Problem identification and description

a. Problem definition

The Scope of threats are Deforestation, pollution and land use change. Deforestation affects the ability to capture carbon, food sovereignty and the loss of livelihoods of more than 600,000 indigenous people who inhabit this bioregion.

Deforestation is related to land use change and, according to the MAE (2016), from 2008 to 2014 64.9% of lost forest in Ecuador became pasture for livestock. In Peru, deforestation and forest degradation account for almost half of all GHG emissions in the country (MINAM, 2010), and Peru has lost 5.3% of its forest cover since 1975.

The problems triggered by pollution are found in both countries as evidenced by the oil pipeline networks – several of which in ruins – that frequently break and continue to generate spills that affect indigenous lands and Amazon ecosystems along the way. The communities that have seen their human rights violated by the oil industry have not received assistance from the States or by the companies.

b. Causes of the problem

- Cause 1: Overlapping extractive concessions on indigenous lands. Has a region-wide effect on the Amazon Region.

The governments of Peru and Ecuador are in the process of granting drilling rights over nearly 22 million acres of mostly roadless areas within the headwater area, on land legally titled to indigenous peoples, and in protected areas such as the Yasuní National Park. In Peru, the government resumed the process for approving oil production in the massive
Block 64, which overlaps with the Achuar’s ancestral lands.

- **Cause 2: Pollution during the extraction process. Has a region-wide effect on the Amazon Region.**
 The oil industry operates in indigenous lands and even protected areas, as is the case of the Yasuní National Park in Ecuador. This has meant a series of environmental and social impacts, such as the pollution caused by Chevron-Texaco in the Amazon in Ecuador, or the recurring spills around oil lots 8 and 192, and the oil pipeline in the northern Peruvian Amazon.

 - **Effect 2: Oil spill accidents. Has a region-wide effect on the Amazon Region.**
 According to OSINERGMIN and OEF A, 474 spills have occurred in oil lots from 2000 to 2019 in Peru. Since 2014, there has been a significant increase in oil spills from the North Peruvian pipeline, which has caused a substantial decrease in the health and well-being of the population. In 2000-2019, 65.4% of the spills that occurred in oil lots in the Amazon and in the Norperuano Pipeline were due to corrosion of the pipelines and operational failures.

- **Effect 3: Network of illegal roads. Has a region-wide effect on the Amazon Region.**
 The issue of roads in the region deserves special notice due to its direct influence on deforestation and forest degradation. In Peru, in 2009 more than 14,000 km of occasionally passable roads were built informally at the initiative of oil, mining, farming or logging companies; this was often with the support of municipalities and without any sort of environmental or social care.

 In the Ecuadorian Amazon, the ave-
ranged density of roads tripled in 2012 in comparison with the rest of the Amazon basin (37.5 km/km²). These road developments were meant for oil exploitation.

The extent of these road encroachments leads to fragmented habitats, degraded streams and water quality, spread of invasive alien species, increased mortality of wildlife and lost species.

- **Effect 4: Uncontrolled logging along the oil extraction route. Has a region-wide effect on the Amazon Region.**
 The oil business operates primarily in the northwestern zone of the Sacred River Basins Bioregion and involves large areas of deforested forest along the extraction route.

5.2 Identification and description of the S implemented

The subject of the S used for mitigating or resolving the problem is the Protection and conservation of biological diversity and the means or mechanism used are as follows:

- **Means/Mechanisms 1:** The mechanism is the Bioregional Alliance of Indigenous Peoples, which was used in subregional meetings and workshops, and the Alliance successfully protected their lands, based on the collective rights of the indigenous peoples in the Amazon.

- **Means/Mechanisms 2:** The mechanism is Sustainable Land Use Planning for the region, which was based on the Creation of the Ecological Planning Work Group, an initiative intended to conduct research, analysis and surveys, and to facilitate biocultural mapping of the indigenous peoples themselves; it has successfully collected and integrated layers of information, such as pending indigenous land claims, industrial threats, wildlife corridors, hunting grounds, protection status, types of ecosystems and biodiversity data, population data, access routes and river connections, assistance to the alliance to set priorities and make sound governance decisions.

- **Means/Mechanisms 3:** The mechanism is the Visibility of the sacred headwaters of the Amazon River, and it was used in the creation of the Communication Group and Development of a communications plan; Organize and engage opinion leaders, journalists, networks of influencers, celebrities, scientists, and scholars in support of the Initiative; it has successfully achieved opposition to the expansion of mining and oil operations in the sacred Amazon river basins.
• **Means/Mechanisms 4**: The mechanism is Key Stakeholder Engagement, and it was used in the Regional Multi-stakeholder Participatory Planning Process that includes government and civil society; a compelling plan backed up with rigorous analysis to protect the biological and cultural heritage will be shared with the public. Building on the 2016 resolution adopted by the IUCN, which calls for the protection of sacred natural areas free from industrial extraction as a means to promote the protection of the Sacred Headwaters. No effect on the problem to date.

• **Means/Mechanisms 5**: The mechanism is Responding to imminent land threats, and it was used in supporting local, national and international strategies to curb the expansion of extractive industries and challenge the current development model; it has successfully supported national and international legal processes (UN, Inter-American Court of Human Rights of the OAS) to hold governments and oil/mining industries accountable for violating land rights and environmental regulations.

6. Results achieved

Result 1: CONFENIAE (Ecuador) – AIDESEP (Perú) Agreement
This was achieved with the signing of the agreement between CONFENIAE (Ecuador) and AIDESEP (Peru) on March 19, 2018. Its purpose was to create the Sacred Amazon River Basins initiative in a biocultural sanctuary as a zone of no intrusion for industrial-scale extraction and promote indigenous co-governance. https://panorama.solutions/sites/default/files/convenio_confeniae_y_aidesep.pdf

Result 2: Creation of the Ecological Planning Work Group.
The Ecological Planning Work Group conducts research, analysis and surveys, and will facilitate biocultural mapping of indigenous peoples themselves. Mapping provides geospatial analysis for planning at landscape scales. It also collects and integrates layers of information, such as pending indigenous land claims, industrial threats, etc. https://panorama.solutions/en/node/4107

Result 3: Creation of the Communications Group, outreach materials, participation in the COP-25 press room.
The purpose of the communications group is to ensure that the Initiative receives positive feedback in public opinion polls in Ecuador and Peru; that key opinion leaders, scientists, ministers, and political leaders from both countries publicly declare their support for the Initiative and achieve international visibility in social media and conservation/environmental publications and networks, and among public and private conservation foundations and financing institutions. https://www.dw.com/es/cop25-.
Result 4: In 2021, the Minister of Economy and Finance of Peru expressed his support for the Bioregional Plan, which includes a roadmap and concrete actions to achieve an adequate ecological transition and avoid the point of no return in the destruction of the Amazon rainforest.

Result 5: Support to national and international legal processes (UN, Inter-American Court of Human Rights of the OAS) to hold governments and oil/mining industries accountable for violating land rights and environmental regulations, including the following cases:

- In 2018, the Superior Court of Ecuador ratified the proceedings against Chevron Texaco that required it to pay $9.5 billion in damage for the cleanup of 18 billion gallons of oil spills in the tropical forest.
- Victory in the Inter-American Court of Human Rights that ruled that the State of Ecuador was responsible for violating the rights of the Kichwa de Sarayaku indigenous people by initiating oil development in their lands without conducting a free, prior and informed consultation with the community.

Replicability is at the Regional level in the Amazon and can be extrapolated to other Amazon river basins that face the same pollution problems due to extractive processes. A major factor for replicability is the establishment of Alliances or Agreements of Indigenous Peoples in the Amazon River basin areas.
governance (recognition of the pending legalization of more than 9 million hectares of indigenous lands).

Impact 2: Economic impact, creation of a River Basin Fund aimed at ensuring the health and well-being of Amazonian peoples and ecosystems.

Impact 3: Environmental impact, curbing the encroachment of extractive industries, eliminating forest degradation and loss, and promoting forest conservation and restoration.

8. Identification of actors

• **Actor 1: COMMUNITY**
 AIDESEP and CONFENIAE are representatives from the Alliance and leaders of the Peruvian and Ecuadorian sides, respectively; they rely on COICA’s support to the initiative at the regional level.

• **Actor 2: CIVIL SOCIETY**
 The Pachamama Foundation supports the rights of indigenous peoples, including land rights and the protection of forests; the Pachamama Alliance relies on working groups to look into legal frameworks, financing mechanisms, regional and ecological planning, and communications strategies; and Amazon Watch directs support from foundations and major donors to indigenous communities and governance support.

• **Actor 3: GOVERNMENT**
 The MEF and MINAM support the Bioregional Plan for the sacred river basins, which includes a roadmap and concrete actions to achieve an adequate ecological transition and avoid the point of no return in the destruction of the Amazon rainforest.

9. Referencias Bibliográficas

CIDH. (s.f.). Ficha Técnica: Pueblo indígena Kichwa de Sarayaku Vs. Ecuador. Recuperado el día 21 de marzo de 2022 de https://www.corteidh.or.cr/cf/jurisprudencia2/ficha_tecnica.cfm?nId_Ficha=206

Cuencas Sagradas Amazónicas (s.f.). Cuencas Sagradas Amazónicas. Recuperado el día 21 de marzo de 2022 de https://cuencasagradas.org/

Annex 2: Sample systematization of Good Practices

A. Good Conservation Practices – Creation of the Unini River Extractive Reserve under a public consultation process.

1. Thematic Area 2
Sustainable production practices

2. Summary of GP
The Jaú National Park (PARNA Jaú), a Protected Area (PA) covering 2,000 ha, was created (1979) under a strict protection management category with the aim of protecting the integrity of the ecosystems and communities and populations that occupy this territory. The implementation of the management plans proved to be particularly challenging due to social conflicts arising from the restrictions on the use of resources and relocation of the residents of the Unini River in the PARNA Jaú. The situation was further compounded by increased extractive activities and illegal use by some local populations and migrant populations attracted by the natural resources provided by the significant biodiversity found in this PA.

In 2006, a RESEX (Rio Unini Extractive Reserve, covering 833,352 ha) was created at the north-west end of the Jaú National Park, which, due to its nature, allows for the active participation of local native and rural communities in extractive and service development activities through comprehensive management of the land according to the mosaic approach, the development of a participatory management plan and signature of terms of commitment for conservation management.

The RESEX was created with the support of the Vitória Amazônica Foundation as a technical cooperation institution under IBAMA. The first step to establish it was the creation of the Unini River Residents Association (AMORU), which later requested that the Unini River RESEX be created. A public consultation process was launched in the local communities to endorse creation of the Reserve, which follows sustainable use principles.

Creation of the Unini River RESEX was an achievement not only for the residents of the Unini River area, but also for the Amazon region, culminating in the creation of the first extractive reserve in the Negro River basin, which contributed significantly to the balance of the mosaic of Protected Areas in the region.

3. Identification and location of the GPP
3.1 Type of GP

It is a Good Practice (GP) because it relies on a legal management instrument.

3.2 Location of the GP

The Unini River Extractive Reserve (RESEX Unini) is located 200 km northwest of Manaus, in the municipality of Barcelos, state of Amazonas, Brazil. The RESEX is 172 km from the center of Barcelos and Novo Airão, towns where the residents of the Unini River go.

It is bordered to the east by the Negro River, to the west by the headwaters of the Unini River and to the north by the Unini/Caurés interfluve. The southern border is complementary to the northern border of the Jaú National Park (PARNa Jaú) and the Amanã Sustainable Development Reserve (RDS Amanã), and these form a mosaic of Federal and State Protected Areas (PAs).

The communities live primarily from subsistence fishing, extractivism and slash-and-burn, and cassava plantations for the production of flour. Residents have a low level of schooling and precarious health care as a result of absent public policies.

There is a strong relationship between the residents of Unini and the towns of Novo Airão and Barcelos, in particular in terms of trade and the search for social assistance services. There are three grassroots organizations along the Unini River that represent and stand for the rights of the communities: The Unini River Neighborhood Association (AMORU), the Unini River Joint Agro-extractivist Cooperative (COOMARU) and the Tapiíra Community Neighborhood Association (AMOTAPI).

In addition to farming, other economic activities are conducted in an organized and managed manner, such as: management of pirarucú or paiche, management of ornamental fish, extraction of lianas (titica and timbó), extraction of aruma and processing of Brazil nuts.

The Good Practice is of a Subnational level since it is developed in the state of Amazonas, Brazil.
3.3 Summary of Problem.

The problem are the restrictions on the use of resources and relocation of the residents of the Unini River in the Jaú National Park (PARNA Jaú).

The history of the Unini River communities is not different from other communities that witnessed their lands changing into National Parks. In their early creation days during the 1980s, they began to experience restrictions on the use of local resources and to face the possibility of having to leave the National Park. Creation of the PARNA Jaú failed to take into account the human presence or the unique socio-cultural profile of the Unini River. Therefore, under the Terms of Commitment for the management of this protected area with the Unini River Residents Association (AMORU), the Unini River Extractivist Reserve (RESEX) was created and so the residents were allowed to remain in the area they inhabited and to develop extractive activities sustainably. This also addressed the issue of natural resources destruction by external agents.

4. Definition of the problem mitigation

4.1 Problem identification and description

a. Problem definition

The scope of the threats is the Abuse of Resources. The Unini River RESEX was based on two aspects related to resources. First, protection of the headwaters of the rivers, an area with abundant extractive resources such as rubber, Brazil nut, vines, copaiba, balata, fish, etc. that have a great potential for development. Secondly, the need to control access to the river and its resources.

b. Causes of the problem

• Cause 1: Creation of the Jaú National Park failed to take into account the human presence or the socio-cultural aspects of the Unini River. Has a Subnational scope.
 Creation of PARNa Jaú focused on protecting the forest, and not the residents of the PARNa. In 1989, IBAMA – Manager of PARNa – attempted to pay compensation to the local residents so that they could leave the area, but as funds were not available and implementation of a settlement project was put on hold, IBAMA imposed several restrictions on the residents of the PARNa, preventing them from conducting the extractive activities that they had previously developed.

• Cause 2: Disorganization of communities. Has a Subnational scope.
 The communities along the Unini River formed as a result of a migratory process; they were attracted to the siringa (rubber extraction) business. These communities were not aware of restrictions on the use of resources, so they developed a quite mixed form of coexistence in terms of uses and customs, which led to social conflicts and communal disorganization.

 The local populations subsequently needed a community organization, and in 2005 they created the Unini River Residents Association (AMORU) so as to have their demands heard.

c. Effects of the problem

• Effect 1: Restrictions on the use of resources in the Jaú National Park. Has a Subnational scope.
 The residents of the PARNa of Jaú were prevented from conducting the extractive activities that they had been previously developing. This had a significant impact on household income, which led to the eviction of some families and intensified the existing conflict between IBAMA and residents of the area.

• Effect 2: Unsustainable use of resources. Has a Subnational scope.
 Unsustainable extractive activities are conducted in PARNa Jaú, including commercial fishing and fishing of ornamental fish, collection of turt-
le eggs, logging, burning to prepare farmland, commercial hunting, inappropriate visits generally by squatters to the area and issues involving overlapping uses of resources across communities.

4.2 Identification and description of the GP implemented

The theme of the GP used for the mitigation or resolution of the problem is the Sustainable Production Practices. Creation of the Unini River extractivist reserve (RESEX Unini) provides land that allows the residents to remain on the Unini River to develop extractive activities sustainably. This also addressed the issue of natural resources destruction by external agents.

- **Instrument/Tool 1**: The instrument for the creation of the RESEX Unini was the public consultation held on May 14, 2005, which had the participation of more than 200 people, including residents in the area, representatives of municipal, state and federal governments and non-governmental organizations. Previously, meetings of the Unini River Residents Association (AMORU) were held with the legal representatives of IBAMA, CNPT and the Municipal Council of Barcelos for the request to establish the RESEX Unini. After much struggle, uncertainty and an enhanced voice of various groups, the President of the Republic ordered the Creation of RESEX Unini on June 21, 2006.

5. Results achieved

The problem was solved since the RESEX allows the residents to remain within the RESEX along the Unini River and develop sustainable extractive activities, which provides a favorable environment for conservation and access to resources, which creates precedents for a potential co-management scheme involving the existing neighboring protected areas, including PARNA Jaú and the Amanã Reserve. Likewise, for the local population to control resources, it would make it necessary to solve internal conflicts caused especially by abuse of natural resources, such as the operations of sport fishing companies and commercial predatory fishing.

- **Result 1**: Creation of the Unini River Extractive Reserve (RESEX Unini) through a Decree of June 21, 2006, in the Municipality of Barcelos, State of Amazonas, whose purpose is to protect the livelihoods and culture of the extractivist population residing within its scope and ensure the sustainable use of the natural resources in the protected area.

- **Result 2**: Preparation of the Unini River Extractivist Reserve Management Plan, with official enactment in September 2014. The purpose of the Management Plan is to report on the RESEX, its status and its objectives. It also serves to inform management actions and decisions on the ground. This document also facilitates appro-
val and search for resources for the implementation of planned activities.

5.1 Potential for BP replication

Replicability is at the National level because the RESEX model is applied in protected areas in the Brazilian Amazon. Relevant factors should be considered for its replication; traditional extractive populations should be allowed to use them with the goal of protecting their livelihoods and culture and to ensure the sustainable use of natural resources.

6. Impact generated

• **Impact 1:** Social impact, strengthening of organizations and capacities for the sustainable use by the residents of the Unini River, such as AMORU.
 The main formal organizations along the Unini River are AMORU and the Tapiira Community Residents Association - AMOTAPI. AMORU was created in 2002 and brings together 160 members from the 10 communities along the Unini River. AMORU's project was the creation of the Extractive Reserve in the area.

• **Impact 2:** Economic impact, creation of a Brazil nut agro-extractive cooperative and fishing management along the Unini River.
 COOMARU was founded in 2009 to operate a Brazil nut processing plant and help provide the communities along the Unini River Extractive Reserve (RESEX) with a source of income. Operating on a commercial scale since 2014, the processing plant has helped further professionalize the supply chain by adding value to the final product. It relies on technical support from the Vitória Amazônica Foundation (FVA) and other institutions. Regarding fishing management, a consensus was developed in 2004 that outlined criteria and areas for fishing in the Unini River Fishing Agreement based on a joint IBAMA/IPAAM Normative Instruction. In 2012, the First Managed Fishing of Acará Disco (ornamental fish) was launched, and in 2013 the First Managed Fishing of Pirarucu or Paiche was launched.

7. Identification of actors

• **Actor 1:** GOVERNMENT
 ICMBio acted as the steering body for the Unini RESEX. It also manages PARNA Jaú and the Anavilhanas National Park – PNA; IBAMA provided support for the management of the creation of the Unini RESEX and for resource management, primarily to enforce the Fisheries Agreement. In addition, it is a partner of ICMBio in inspection and other projects; the Municipality of Barcelos supported management of the creation of the Unini RESEX. It is a member of the Unini RESEX Deliberative Council and develops public policies in the area.
• Actor 2: PRIVATE SECTOR
The Vitória Amazônica Foundation provided technical assistance and support in the management of the creation of the Unini RESEX. The institution’s objective is to conduct environmental and health surveillance in the state of Amazonas and it acts along the Unini River in collaboration with the Municipality of Barcelos and the Study Center for the Amazon in Catalonia – NeAC in the fight against diseases such as Malaria.

• Actor 3: COMMUNITY
The AMORU is the applicant for the creation of the RESEX Unini and is the entity that represents the residents in the Unini River communities. AMORU’s board of directors currently includes representatives from the majority of river communities, and has a Community Council. One of AMORU’s concerns was to establish an association that would ensure the communities were duly represented.

8. References

ICMBIO. (2018). Cartilha do Plano de

12 Unini River RESEX. Participatory Management Plan for the Unini River RESEX, by ICMBIO, 2014. Page 31

UICN. (2014). Estudio de caso Brasil: Parque Nacional do Jaú y Reserva Extrativista do Rio Unini. Araujo, N y Ca-

